Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia.
نویسندگان
چکیده
BACKGROUND Differences in survival have been reported between pediatric and adult acute lymphoblastic leukemia. The inferior prognosis in adult acute lymphoblastic leukemia is not fully understood but could be attributed, in part, to differences in genomic alterations found in adult as compared to in pediatric acute lymphoblastic leukemia. DESIGN AND METHODS We compared two different sets of high-density single nucleotide polymorphism array genotyping data from 75 new diagnostic adult and 399 previously published diagnostic pediatric acute lymphoblastic leukemia samples. The patients' samples were randomly acquired from among Caucasian and Asian populations and hybridized to either Affymetrix 50K or 250K single nucleotide polymorphism arrays. The array data were investigated with Copy Number Analysis for GeneChips (CNAG) software for allele-specific copy number analysis. RESULTS The high density single nucleotide polymorphism array analysis of 75 samples of adult acute lymphoblastic leukemia led to the identification of numerous cryptic and submicroscopic genomic lesions with a mean of 7.6 genomic alterations per sample. The patterns and frequencies of lesions detected in the adult samples largely reproduced known genomic hallmarks detected in previous single nucleotide polymorphism-array studies of pediatric acute lymphoblastic leukemia, such as common deletions of 3p14.2 (FHIT), 5q33.3 (EBF), 6q, 9p21.3 (CDKN2A/B), 9p13.2 (PAX5), 13q14.2 (RB1) and 17q11.2 (NF1). Some differences between adult and pediatric acute lymphoblastic leukemia were identified when the pediatric data set was partitioned into hyperdiploid and non-hyperdiploid cases and then compared to the nearly exclusively non-hyperdiploid adult samples. In this analysis, adult samples had a higher rate of deletions of chromosome 17p (TP53) and duplication of 17q. CONCLUSIONS Our analysis of adult acute lymphoblastic leukemia cases led to the identification of new potential target lesions relevant for the pathogenesis of acute lymphoblastic leukemia. However, no unequivocal pattern of submicroscopic genomic alterations was found to separate adult acute lymphoblastic leukemia from pediatric acute lymphoblastic leukemia. Therefore, apart from different therapy regimen, differences of prognosis between adult and pediatric acute lymphoblastic leukemia are probably based on genetic subgroups according to cytogenetically detectable lesions but not focal genomic copy number microlesions.
منابع مشابه
Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملAssocition between LAPTM4B gene polymorphism and the risk of childhood acute lymphoblastic leukemia
Introduction: Evidence suggests that Lysosome associated protein transmembrane 4B (LAPTM4B) contributes to the risk of numerous cancers. The present study aimed to find out the impact of LAPTM4B polymorphism on the risk of childhood acute lymphoblastic leukemia (ALL) in the southeastern Iranian population. Materials and Methods: A total of 230 subjects including 110 children diagnosed with ALL ...
متن کاملAssociation of TPMT (rs1800460) Gene Polymorphism with Childhood Acute Lymphoblastic Leukemia in a Population from Guilan, Iran
Acute lymphoblastic leukemia (ALL) is a malignant transformation and proliferation of lymphoid progenitor cells in bone marrow and blood, which is mainly found in children. Thiopurine methyltransferase (TPMT) is a thiopurine drug metabolizer enzyme that is prescribed for the treatment of ALL. Several single nucleotide polymorphisms in the TPMT gene have been reported to be associated with the d...
متن کاملInterleukin-23 Receptor Gene Variants in Acute Lymphoblastic Leukemia and Their Relation to Prognostic Factors
Background: Interleukin (IL)-23 has an important role in tumor immune regulation. Objective: To investigate the possible association of interleukin-23 receptor (IL23R) gene variants rs1884444, rs10889677 and rs11209026 with development of acute lymphoblastic leukemia (ALL). Methods: The IL23R variants were studied in 164 ALL patients and compared to 175 healthy controls by polymerase chain reac...
متن کاملMolecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray.
Pediatric acute lymphoblastic leukemia (ALL) is a malignant disease resulting from accumulation of genetic alterations. A robust technology, single nucleotide polymorphism oligonucleotide genomic microarray (SNP-chip) in concert with bioinformatics offers the opportunity to discover the genetic lesions associated with ALL. We examined 399 pediatric ALL samples and their matched remission marrow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Haematologica
دوره 95 9 شماره
صفحات -
تاریخ انتشار 2010